近来,氧化镓(Ga2O3)作为一种“超宽禁带半导体”材料,得到了持续关注。超宽禁带半导体也属于“第四代半导体”,与第三代半导体碳化硅(SiC)、氮化镓(GaN)相比,氧化镓的禁带宽度达到了4.9eV,高于碳化硅的3.2eV和氮化镓的3.39eV,更宽的禁带宽度意味着电子需要更多的能量从价带跃迁到导带,因此氧化镓具有耐高压、耐高温、大功率、抗辐照等特性。并且,在同等规格下,宽禁带材料可以制造die size更小、功率密度更高的器件,节省配套散热和晶圆面积,进一步降低成本。
第一代半导体指硅(Si)、锗(Ge)等元素半导体材料;第二代半导体指砷化镓(GaAs)、磷化铟(InP)等具有较高迁移率的半导体材料;第三代半导体指碳化硅(SiC)、氮化镓(GaN)等宽禁带半导体材料;第四代半导体指氧化镓(Ga2O3)、金刚石(C)、氮化铝(AlN)等超宽禁带半导体材料,以及锑化镓(GaSb)、锑化铟(InSb)等超窄禁带半导体材料。第四代超宽禁带材料在应用方面与第三代半导体材料有交叠,主要在功率器件领域有更突出的应用优势。第四代超窄禁带材料的电子容易被激发跃迁、迁移率高,主要应用于红外探测、激光器等领域。第四代半导体全部在我国科技部的“战略性电子材料”名单中,很多规格国外禁运、国内也禁止出口,是全球半导体技术争抢的高地。第四代半导体核心难点在材料制备,材料端的突破将获得极大的市场价值。氧化镓有5种同素异形体,分别为α、β、γ、ε和δ。其中β-Ga2O3(β相氧化镓)最为稳定,当加热至一定高温时,其他亚稳态均转换为β相,在熔点1800℃时必为β相。目前产业化以β相氧化镓为主。- 超宽禁带,在超高低温、强辐射等极端环境下性能稳定,并且对应深紫外吸收光谱,在日盲紫外探测器有应用。
- 高击穿场强、高Baliga值,对应耐压高、损耗低,是高压高功率器件不可替代的明星材料。
氧化镓是宽禁带半导体中唯一能够采用液相的熔体法生长的材料,并且硬度较低,材料生长和加工的成本均比碳化硅有优势,氧化镓将全面挑战碳化硅。氧化镓的Baliga优值分别是GaN和SiC的四倍和十倍,导通特性好。氧化镓器件的功率损耗是SiC的1/7,也就是硅基器件的1/49。氧化镓的硬度比硅还软,因此加工难度较小,而SiC硬度高,加工成本极高。氧化镓用液相的熔体法生长,位错(每平方厘米的缺陷个数)<102cm-2,而SiC用气相法生长,位错个数约105cm-2。氧化镓用液相的熔体法生长,每小时长10~30mm,每炉2天,而SiC用气相法生长,每小时长0.1~0.3mm,每炉7天。氧化镓的晶圆线与Si、GaN以及SiC的晶圆线相似度很高,转换的成本较低,有利于加速氧化镓的产业化进度。从日本经济新闻网报道的原文“Novel Crystal Technology在全球首次成功量产以新一代功率半导体材料氧化镓制成的100毫米晶圆,客户企业可以用支持100毫米晶圆的现有设备制造新一代产品,有效运用过去投资的老设备。”来看,氧化镓不像SiC需要特殊设备而必须新建产线,潜在可转换的产能已非常巨大。- 单极替换双极:即MOSFET替换IGBT,新能源车及充电桩、特高压、快充、工业电源、电机控制等功率市场中,淘汰硅基IGBT已是必然,硅基GaN、SiC、Ga2O3是竞争材料。
- 更加节能高效:氧化镓功率器件能耗低,符合碳中和、碳达峰的战略。
- 易大尺寸量产:扩径、生产简单,芯片工艺易实现,成本低。
- 可靠性要求高:材料稳定,结构可靠,高品质衬底/外延。
- 长期来说,氧化镓功率器件覆盖650V/1200V/1700V/3300V,预计2025年至2030年全面渗透车载和电气设备领域,未来也将在超高压的氧化镓专属市场发挥优势,如高压电源真空管等应用领域。
- 短期来说,预计氧化镓功率器件将在门槛较低、成本敏感的中高压市场率先出现,如消费电子、家电以及能发挥材料高可靠、高性能的工业电源等领域。
GaN市场需要大尺寸、低成本的衬底,才能真正发挥GaN材料的优势。同质衬底上生长同质外延的外延层品质是最好的,但由于GaN衬底价格很高,在LED、消费电子、射频等领域采用相对廉价的衬底,如Si、蓝宝石、SiC衬底,但这些衬底与GaN晶体结构的差异会造成晶格失配,相当于用成本牺牲了外延品质。当GaN同质外延GaN,才能用在激光器这类要求较高的应用场景。GaN与氧化镓的晶格失配仅2.6%,以氧化镓衬底,异质外延生长的GaN品质高,且无铱法生长6寸氧化镓的成本接近硅,有望在GaN射频器件市场得到重要应用。熔体法是生长半导体材料最理想的方式,有以下几个优势。氧化镓是宽禁带半导体中唯一有常压液态的材料,即可用上述熔体法生长。氧化镓生长常用的直拉法为熔体法的一种,需要依赖铱坩埚(贵金属Ir单质),原因是直拉法生长氧化镓需要高温富氧的环境,否则原料容易分解成Ga和O2,影响产物,而只有贵金属铱坩埚能够在这种极端环境下保持稳定。由于直拉法原料挥发较多,氧化镓的长晶工艺从直拉法逐步演变为有铱盖和模具的导模法,两种方法均需使用铱坩埚,目前导模法已成为主流的氧化镓长晶方法。然而由于铱坩埚的成本和损耗太高,生长几十炉后就会被腐蚀损耗,需要重新熔炼加工,且长晶过程中,铱会形成杂质进入晶体,产业界有很强的无铱法开发需求。2022年4月,日本经济新闻网发布了一则消息,日本C&A公司采用一种铜坩埚的直拉法生长出2寸氧化镓单晶,能够将成本降至导模法的1/100。SiC从2寸到6寸花了20年(1992-2012),而氧化镓从2寸到6寸仅4年(2014-2018)- 国外:日本NCT公司领跑全球氧化镓产业,供应全球近100%的氧化镓衬底,2寸片2.5万元,4寸片5-6万元。
- 国内:中电科46所在2018年创造了国内的氧化镓4寸记录,山东大学于2022年也报道了4寸,目前国内还未出现有量产能力的公司或院校,一定程度上限制于铱坩埚的成本。
氧化镓衬底和外延环节位于功率器件的产业链上游。类比碳化硅产业链,价值集中于上游衬底和外延环节:1颗碳化硅器件的成本中,47%来自衬底,23%来自外延,衬底+外延共占70%。随着氧化镓的成本进一步降低,衬底占比会比SiC小得多。总的来说,在未来10年,氧化镓器件将有可能成为直接与碳化硅竞争的电力电子器件,但作为半导体新材料,氧化镓市场规模的突破取决于成本的快速降低。未来几年是日本开始大规模导入氧化镓的关键阶段,中国能否紧跟业界脚步,需要国内氧化镓产业界携手努力。
转载微信公众号:半导体材料与工艺
声明:本文版权归原作者所有,转发仅为更大范围传播学习,若有异议请联系搏鱼官网修改或删除:market@cgbtek.com
联系方式:
服务热线/Service: 400-650-7658 + 8613910297918
邮箱/Email :sales@cgbtek.com
公司网站/Website: http://www.cgbtek.com
生产基地/Address: 河北省廊坊市香河机器人产业园3期A栋
华东总部/无锡市新吴区设计大厦B1003-1004